

Community-Based Sustainable Development

Building Resilience: From Assessment to Implementation

5th Annual Delaware Energy Conference Newark, DE

Wednesday, October 31, 2018

COMMUNITY-BASED SUSTAINABLE DEVELOPMENT

New Ecology's work is to bring the benefits of sustainable development to the community level, with a concerted emphasis on underserved populations. A mission-driven non profit, we seek to address global environmental and equity issues by making the built environment more efficient, healthier, durable, and resilient. We are nationally recognized for our work on affordable and mutfifamily housing, community and government buildings, educational facilities, renewable energy and local infrastructure and for the positive effect we have on the people who live and work in these places.

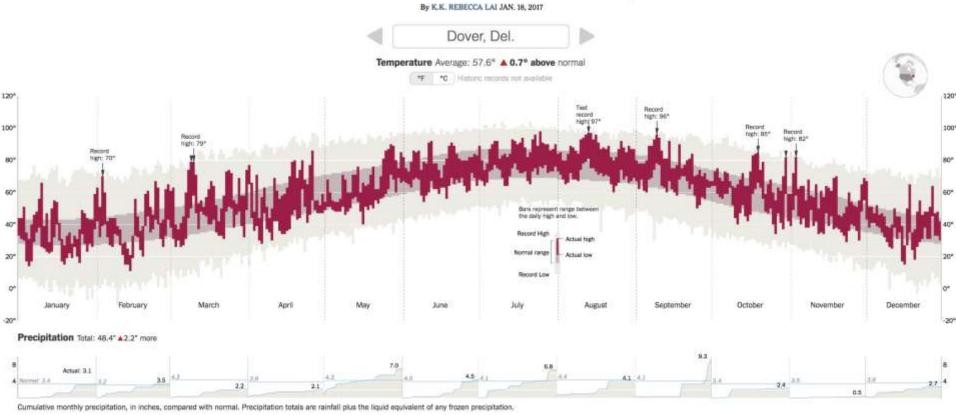
New Ecology, Inc. | Boston/Hartford/Providence/Baltimore/Wilmington | Community-Based Sustainable Development

Outline

- What and why?
- Hazard Assessment Vulnerability and Risk
- Existing Resilience Tools
- NEI's Building-Level Approach, Examples, and Design
- Financing Resilience

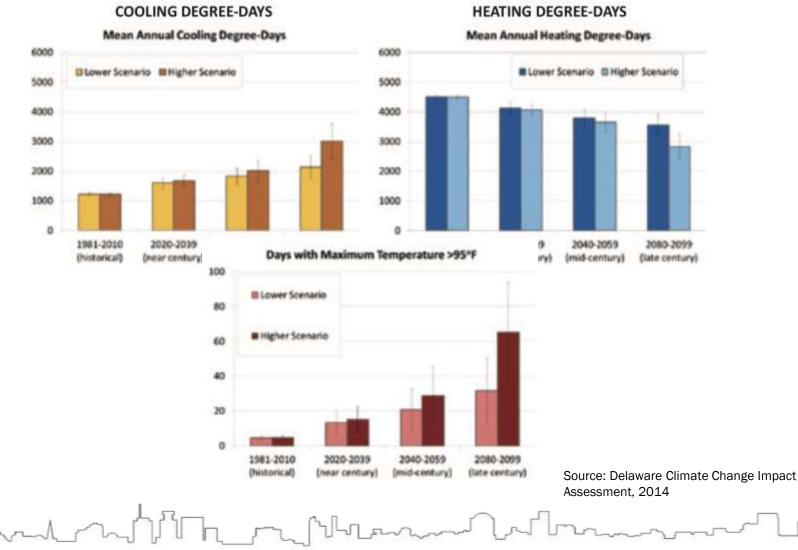
What is Resilience?

Adapting to changing climate.


Why now?

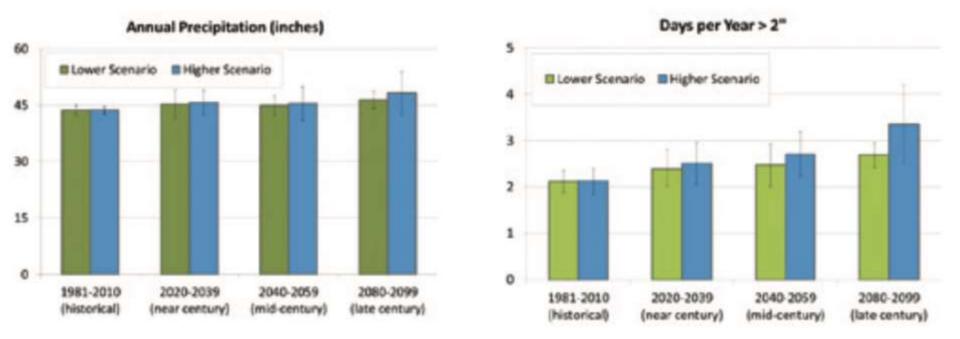
Abnormal is the new normal.

How Much Warmer Was Your City in 2016?



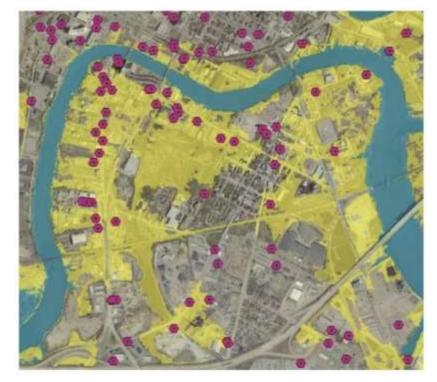
Source: https://www.nytimes.com/interactive/2017/01/18/world/how-much-warmer-was-your-city-in-2016.html#dov

The New Hork Times

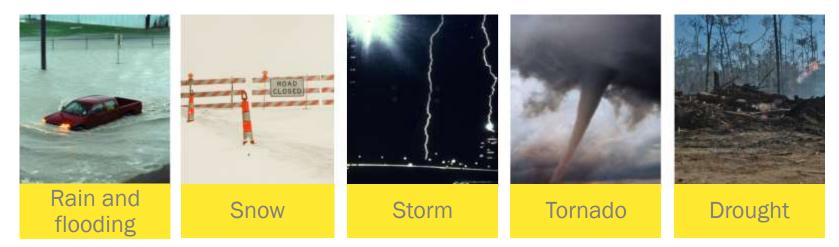


More Heat

More Water


Source: Delaware Climate Change Impact Assessment, 2014

New Ecology, Inc. | Boston/Hartford/Providence/Baltimore/Wilmington | Community-Based Sustainable Development


Source: Avoiding and Minimizing Risks of Flood Damage to State Assets: A Guide for Delaware State Agencies, 2016

Source: Preparing for Tomorrow's High Tide: Sea Level Rise Vulnerability Assessment for the State of Delaware, 2012

Predicted Disasters

Sudden Disasters

Chronic Hazards

What are the impacts?

Loss of power

Communications interruptions

Building damage

Evacuation

Resident / occupant safety

Hazard Assessment Vulnerability and Risk

Identify Hazards

Primary	Secondary	
Coastal Flooding	Carbon Monoxide Poisoning	
Coastal Erosion	Disease	
Drought	Emergency Communications Failure	
Inland Flooding and Stormwater	Heat Outage	
Extreme Heat	Mold	
Extreme Cold	Pest Range Expansion	
Major Thunderstorm	Power Outage	
Snow or Ice Storm	Toxin Exposure	
Terrorist Attack	Water Outage	
Tornado		
Urban Fire		

New Ecology, Inc. | Boston/Hartford/Providence/Baltimore/Wilmington | Community-Based Sustainable Development

R.C

Vulnerability and Risk Assessment

Vulnerability – Sensitivity to a hazard and the capacity to adapt to the hazard.

Source: Flood Panel

Vulnerability and Risk Assessment

Risk – Likelihood and consequence of a hazard.

Image: FEMA

Image: Houston Chronicle

Vulnerability and Risk Assessment

	Vulnerability		Risk	
Hazard	Sensitivity	Adaptive Capacity	Likelihood	Impact
Stormwater Flooding	Medium	Low	High	High
Sewer Backup	Medium	Low	High	Medium
Tornado	Medium	Low	High	High
High Winds	Medium	Low	Low	High
Extreme Heat	Medium	Medium	Medium	Medium
Extreme Cold	Medium	Low	Medium	Medium
Extended Electric Outage	High	Low	Low	Medium
Extended Water Outage	High	Low	Medium	Medium

Tools for Resilience

Community Resilience Building 🛛 😤 🍄

Get on the right path to resilience today...

NEI's Approach: Existing Buildings

Example 1

Masonry Multifamily High Rise

Building Characteristics

- Norfolk, NE
- Fork in the Elkhorn River, FEMA 1% Annual Chance Flood Zone behind Unaccredited Levee
- Built in 1972
- 9 Floors
- 92 1BR Senior Apts.

Hazards

- Stormwater Flooding and Sewer Backup
- Tornado and High Winds
- Extreme Heat and Cold
- Extended Electric, Gas, and Water Outage

Scenario: Flood

- Unaccredited Levee
- 1% Annual Chance Flood
- History of Flooding
- Continued
 Occupancy and
 Building Systems
 Operations
- Rapid Removal of Water and Repair

Images: Floodsax.

Example Audit 1

Masonry Multifamily High Rise

Vulnerability and Risk

	Vulnerability	/	Risk	
Hazard	Sensitivity	Adaptive Capacity	Likelihood	Impact
Stormwater Flooding	Medium	Low	High	High
Sewer Backup	Medium	Low	High	Medium
Tornado	Medium	Low	High	High
High Winds	Medium	Low	Low	High
Extreme Heat	Medium	Medium	Medium	Medium
Extreme Cold	Medium	Low	Medium	Medium
Extended Electric Outage	High	Low	Low	Medium
Extended Water Outage	High	Low	Medium	Medium

Develop and Implement Measures

Rank	Hazard	Measures
1	Stormwater Flooding	Flood Barriers, Perimeter Drains, Elevate Electrical Panels, Relocate Hazardous Chemicals, Elevator Controls
2	Tornado	Structural and Glazing Wind Loading Review, Remove Roof Ballast Stone
2	Sewer Backup	Backflow Preventer
3	Extended Water Outage	Potable Water Storage
4	Extreme Cold	Insulate, Air Seal, Replace Windows
4	Extreme Heat	(see Extreme Heat)
5	High Winds	Structural and Glazing Wind Loading Review, Remove Roof Ballast Stone
6	Extended Electric Outage	Backup Generator

Example 2

Multifamily Low Rise

Year Built: 1963 Most Recent Year Rehabbed: 2000 Total Square Feet: 118,716 Total # Apartments: 202 Total # Bedrooms: 329 Total # Stories: 2 and 3 Basement? Conditioned?: Yes, yes Water Meter Configuration: 1 meter per building Electric Meter Configuration: 220 tenant, 16 common meters

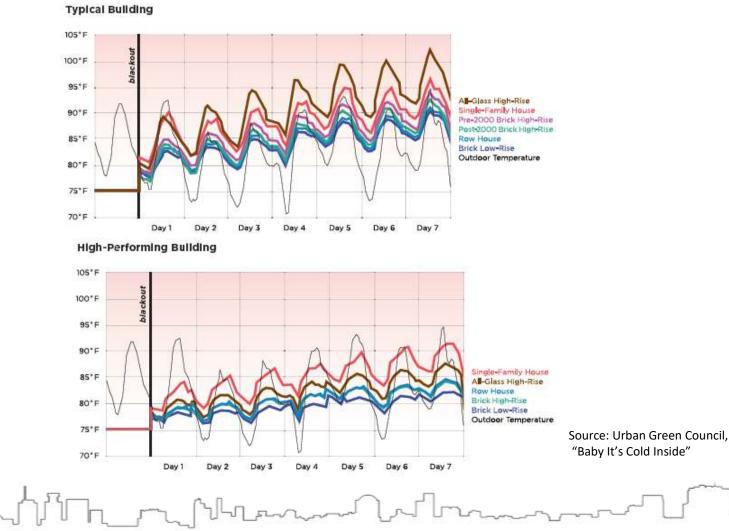
Recommended Measure	Estimated Cost
Elevated Electrical Equipment	\$50,000
Mold Remediation	\$75,000
Sump Pumps	\$3,000
Backwater Valves	\$55,000
Building Floodproofing	\$640,000
Cool Roof	\$225,000
Surface Stormwater Management	\$165,000
High Efficiency Ventilation	\$1,315,000
Develop Emergency Management Manual	O&M

New Ecology, Inc. | Boston/Hartford/Providence/Baltimore/Wilmington | Community-Based Sustainable Development

Co-Benefits

Measure with Co-Benefits

- Insulation, Air Sealing, and Window Replacement
 - Heating and Cooling Energy Savings, Improved Passive Survivability, Improved Wind Load Performance, Improved Comfort, Improved Functionality, Reduced Maintenance


Measure without Co-Benefits

- Backup Generator
 - Increased Building Services, Increased
 Operations and Maintenance Costs

Co-Benefits: Passive Survivability

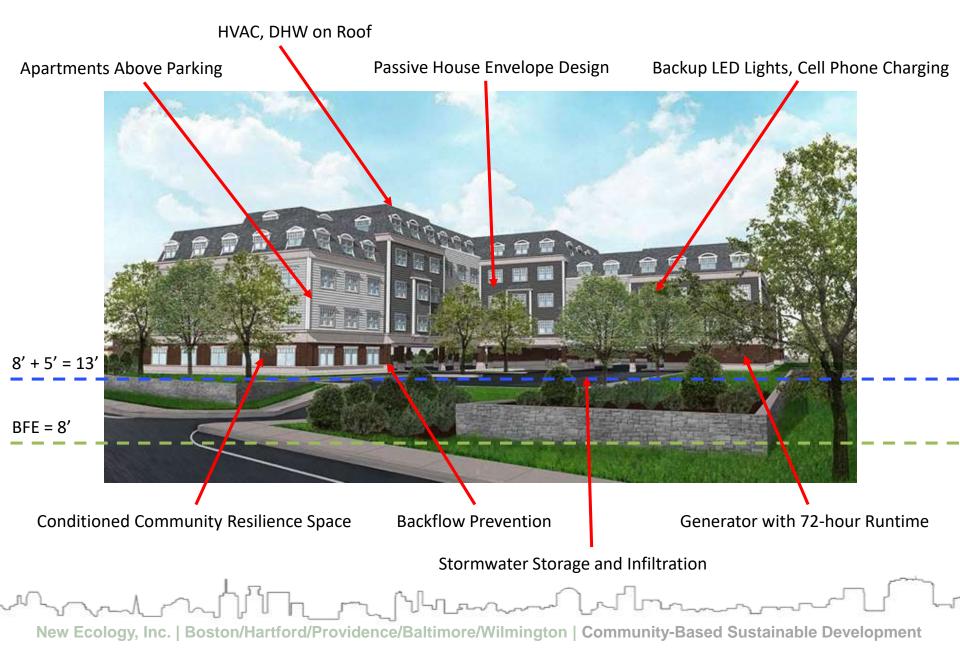
Co-Benefits: Cost Savings

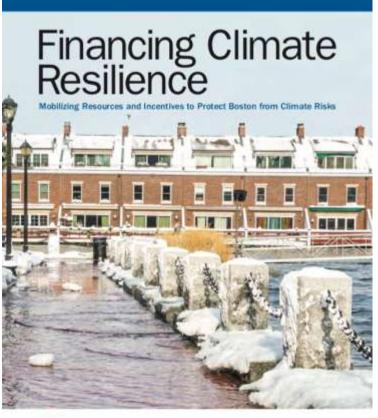
Solar PV + Battery Storage

 Reduced electricity demand charges, backup power supply, more electricity generated on site used on site

NEI's Approach: Design







Financing Resilience

- Capital planning and investment timing
- Avoids future losses but does not generate cash flows
- Benefit-cost analysis demonstrates the business case
- Relate payments to benefits and account for ability to pay

New Ecology, Inc. | Boston/Hartford/Providence/Baltimore/Wilmington | Community-Based Sustainable Development

Thank you!

Patrick Coleman Delaware Regional Manager New Ecology, Inc. <u>coleman@newecology.org</u>

